Functions of nonlinear parameters, computed from electroencephalography (EEG) signals, in mental tasks classification were investigated, where the largest Lyapunov exponent, the mean period of trajectories and the average initial distance between neighboring trajectories were taken as the nonlinear parameters, and Fisher s linear discriminant was adopted as the classifier.
研究了非线性参数作为脑电(EEG)信号特征时对意识任务分类的作用,使用的3种非线性参数特征为最大Lyapunov指数、轨道平均周期和轨道平均初始距离,分类方法为Fisher线性判别式。
本站部份资料来自网络或由网友提供,如有问题请速与我们联系,我们将立即处理!
Copyright © 2013-2024 杭州优配网络科技有限公司 All Rights Reserved 浙ICP备20019715号
免责声明:本站非营利性站点,以方便网友为主,仅供学习。合作/投诉联系QQ:1553292129